Sedimentation is removal of particulate materials suspended in water by quiescent settling due to gravity.

Commonly used unit operation in water and wastewater treatment plants.
SEDIMENTATION

Diagram showing particles in discrete and flocculating forms, with size, shape, and weight as factors.

TYPES OF SEDIMENTATION

- **Type I: Discrete particle settling**
 - No interaction between particles
 - Settling velocity is constant for individual particles
 - Dilute solid’s concentration
 - Examples: presedimentation in water treatment, grit removal in wastewater

- **Type II: Flocculent settling**
 - Particles collide and adhere to each other resulting in particle growth
 - Dilute solid’s concentration
 - Examples: coagulation/flocculation settling in water treatment and primary sedimentation in wastewater treatment
TYPES OF SEDIMENTATION

- **Type III: Hindered or zone settling**
 - Particles are so close together movement is restricted
 - Intermediate solids concentration
 - Solids move as a block rather than individual particles
 - Fluidic interference causes a reduction in settling velocity
 - Distinguishable solids liquid interface
 - Intermediate solids concentration
 - Example: settling of secondary effluents

- **Type IV: Compression settling**
 - Particles physically in contact
 - Water is squeezed out of interstitial spaces
 - Volume of solids may decrease
 - High concentration of solids (sludges)

DISCRETE PARTICLES SETTLING (Type 1)

- Characteristics of the particles
 - Size and shape
 - Specific gravity

- Properties of the water
 - Specific gravity
 - Viscosity

- Physical environment of the particle
 - Velocity of the water
 - Inlet and outlet arrangements of the structure
DISCRETE PARTICLES SETTLING (TYPE 1)

\[F_{\text{net}} = mg - F_d - F_b \]
\[F_{\text{net}} = 0 \]

\[v_s = \sqrt{\frac{4 (\rho_s - \rho_w) gd}{3 \rho_w C_D}} \]

- \(R_e < 1 \), \(C_d = 24/R_e \) (Laminar flow)
- \(1 < R_e < 10^4 \), \(C_d = 24/R_e + 3/(R_e)^{1/2} + 0.34 \) (Transition)
- \(10^3 < R_e < 10^4 \), \(C_d = 0.4 \) (Turbulent)

STOKE’S LAW

- For \(R_e < 1 \) (laminar flow) and
- \(R_e = \rho_w v_s d/\mu \) (for perfect sphere),

Stoke’s law:

\[v_s = \frac{gd^2 (\rho_s - \rho_w)}{18 \mu} \]
\[v_s = \frac{gd^2 (S_g - 1)}{18 \nu} \]
EXAMPLE

Estimate the terminal settling velocity in water at a temperature of 15°C of spherical silicon particles with specific gravity 2.40 and average diameter of (a) 0.05 mm and (b) 1.0 mm.

SOLUTION

- Step 1. Using Stokes equation for (a) at T= 15°C

\[
\rho = 999 \text{ kg/m}^3, \text{ and } \mu = 0.00113 \text{ N s/m}^2 \\
d = 0.05 \text{ mm} = 5 \times 10^{-5} \text{ m} \\
\]

\[
u = \frac{g(\rho_p - \rho)d^2}{18\mu} \\
= \frac{9.81 \text{ m/s}^2 (2400 - 999) \text{ kg/m}^3 (5 \times 10^{-5} \text{ m})^2}{18 \times 0.00113 \text{ N s/m}^2} \\
= 0.00169 \text{ m/s}
\]
SOLUTION...

- Step 2. Check with the Reynolds number

\[
R = \frac{\rho ud}{\mu} = \frac{999 \times 0.00169 \times 5 \times 10^{-5}}{0.00113} \\
= 0.075
\]

(a) **The Stokes’ law applies, since R < 2.**

- Step 3. Using Stokes’ law for (b)

\[
u = \frac{9.81 (2400 - 999) (0.001)^2}{18 \times 0.00113} \\
= 0.676 \text{ m/s}
\]

SOLUTION...

- Step 4. Check the Reynolds number

Assume the irregularities of the particles \(\phi = 0.85 \)

\[
R = \frac{\phi \rho ud}{\mu} = \frac{0.85 \times 999 \times 0.676 \times 0.001}{0.00113} \\
= 508
\]

Since \(R > 2 \), the Stokes’ law does not apply. Use Eq. 1 to calculate \(\nu \)
SOLUTION...

- **Step 5.** Re-calculate C_d and v

\[
C_d = \frac{24}{R} + \frac{3}{\sqrt{R}} + 0.34 = \frac{24}{508} + \frac{3}{\sqrt{508}} + 0.34
\]

\[
= 0.52
\]

\[
u^2 = \frac{4g(\rho_p - \rho)d}{3C_d\rho}
\]

\[
u^2 = \frac{4 \times 9.81 \times (2400 - 999) \times 0.001}{3 \times 0.52 \times 999}
\]

\[u = 0.188 \text{ m/s}
\]

- **Step 6.** Re-check Re

\[
R = \frac{\phi \rho ud}{\mu} = \frac{0.85 \times 999 \times 0.188 \times 0.001}{0.00113}
\]

\[= 141
\]

- **Step 7.** Repeat step 5 with new R

\[
C_d = \frac{24}{141} + \frac{3}{\sqrt{141}} + 0.34
\]

\[
= 0.76
\]

\[
u^2 = \frac{4 \times 9.81 \times 1401 \times 0.001}{3 \times 0.76 \times 999}
\]

\[u = 0.155 \text{ m/s}
\]
SOLUTION...

- Step 8. Re-check Re

\[
R = \frac{0.85 \times 999 \times 0.155 \times 0.001}{0.00113} = 116
\]

- Step 9. Repeat step 7

\[
C_d = \frac{24}{116} + \frac{3}{\sqrt{116}} + 0.34
\]

\[
= 0.72
\]

\[
\mu^2 = \frac{4 \times 9.81 \times 1401 \times 0.001}{3 \times 0.72 \times 999} = 0.160 \text{ m/s}
\]

(b) The estimated velocity is around 0.16 m/s

SETTLING COLUMN

\[
v_0 = \frac{\text{Distance traveled}}{\text{time of travel}} = \frac{Z_0}{t_0}
\]

\[
v_p = \frac{\text{Distance traveled}}{\text{time of travel}} = \frac{Z_p}{t_0}
\]

\[
t_0 = \frac{Z_0}{v_0} = \frac{Z_p}{v_p} \quad \text{and} \quad \frac{v_p}{v_0} = \frac{Z_p}{Z_0}
\]
GENERALLY

- All particles with \(d \geq d_o \), such that \(v \geq v_o \), will arrive at or pass the sampling port in time \(t_o \).
- A particle with \(d_p < d_o \) will have a terminal settling velocity \(v_p < v_o \) and will arrive at or pass the sampling port in time \(t_o \), with original position at, or below a point \(Z_p \).
- If the suspension is mixed uniformly then the fraction of particles of size \(d_p \) with settling velocity \(v_p \) which will arrive at or pass the sampling port in time \(t_o \) will be \(\frac{Z_p}{Z_o} = \frac{v_p}{v_o} \).
- Thus, the removal efficiency of any size particle from suspension is the ratio of the settling velocity of that particle to the settling velocity \(v_o \) defined by \(Z_o/t_o \).

PROCEDURE – SETTLEABLILITY ANALYSIS

- Usually 2m high column
- Mix the suspension thoroughly
- Measure initial SS concentration, \(C_o \)
- Measure concentrations at certain intervals, \(C_i \)
- All particles comprising \(C_1 \) must have settling velocities less than \(Z_o/t_1 \). Thus the mass fraction of particles with \(v_1 < Z_o/t_1 \) is

\[
\chi = \frac{C_1}{C_o}
\]
PROCEDURE – SETTLEABLILITY ANALYSIS

For a given detention time t_0, an overall percent removal can be obtained.

All particles with settling velocities greater than $v_0 = Z_0/t_0$ will be 100 percent removed.

- Thus, $1 - x_o$ fraction of particles will be removed completely in time t_0. The remaining will be removed to the ratio v/v_0, corresponding to the shaded area in Fig. 4.2. If the equation relating v and x is known the area can be found by integration:

$$X = 1 - x_o + \int_0^{x_o} \frac{v_i}{v_o} \, dx$$
EXAMPLE: SETTLING COLUMN ANALYSIS OF TYPE-1 SUSPENSION

- A settling analysis is run on a type-1 suspension. The column is 2 m deep and data are shown below.

<table>
<thead>
<tr>
<th>Time, min</th>
<th>0</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>130</th>
<th>200</th>
<th>240</th>
<th>420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. mg/L</td>
<td>300</td>
<td>189</td>
<td>180</td>
<td>168</td>
<td>156</td>
<td>111</td>
<td>78</td>
<td>27</td>
</tr>
</tbody>
</table>

- What will be the theoretical removal efficiency in a settling basin with a loading rate of 25 m3/m2-d (25m/d)?

SOLUTION

- Step 1. Calculate mass fraction remaining and corresponding settling rates

\[x = \frac{C_i}{C_o} = \frac{189}{300} = 0.63 \]

<table>
<thead>
<tr>
<th>Time, min</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>130</th>
<th>200</th>
<th>240</th>
<th>420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass fraction remaining</td>
<td>0.63</td>
<td>0.60</td>
<td>0.56</td>
<td>0.52</td>
<td>0.37</td>
<td>0.26</td>
<td>0.09</td>
</tr>
<tr>
<td>(V_t \times 10^2), m/min</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.55</td>
<td>1.0</td>
<td>0.83</td>
<td>0.48</td>
</tr>
</tbody>
</table>
SOLUTION

- **Step 2.** Plot mass fraction vs. settling velocity

- **Step 3.** Determine v_o
 - $v_o = 25 \text{m}^3/\text{m}^2.\text{d} = 1.74 \times 10^{-2} \text{ m/min}$

- **Step 4.** Determine $x_o = 54\%$
SOLUTION

- **Step 5.** $\Delta x \cdot v_t$ by graphical integration

![Graphical Integration Diagram]

- **Step 6.** Determine overall removal efficiency

\[
x = 1 - x_o + \sum \frac{\Delta x \cdot v_t}{v_o}
\]

\[
= 0.46 + \frac{0.46}{1.74} = 0.72
\]

SOLUTION...

- **Step 5.** $\Delta x \cdot v_t$ by graphical integration

<table>
<thead>
<tr>
<th>Δx</th>
<th>v_t</th>
<th>$\Delta x \cdot v_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>1.50</td>
<td>0.09</td>
</tr>
<tr>
<td>0.06</td>
<td>1.22</td>
<td>0.07</td>
</tr>
<tr>
<td>0.1</td>
<td>1.00</td>
<td>0.10</td>
</tr>
<tr>
<td>0.1</td>
<td>0.85</td>
<td>0.09</td>
</tr>
<tr>
<td>0.1</td>
<td>0.70</td>
<td>0.07</td>
</tr>
<tr>
<td>0.06</td>
<td>0.48</td>
<td>0.03</td>
</tr>
<tr>
<td>0.06</td>
<td>0.16</td>
<td>0.01</td>
</tr>
</tbody>
</table>

$\sum \Delta x \cdot v_t = 0.46$
TYPE-2 SETTLING

- Involves flocculating particles in dilute suspension
- The Stock’s Equation cannot be used → flocculating particles
- Column settleability analysis with some alteration to that of type-1 settling
 - samples will be taken at several depths at several time intervals and analyzed for suspended-solids concentrations.

Mass fraction removed is calculated as: $x_{1/g} = \left(1 - \frac{C_{1/g}}{C_0}\right) \times 100$
EXAMPLE: SETTLING COLUMN ANALYSIS OF FLOCCULATING PARTICLES.

A column analysis of a flocculating suspension is run the apparatus shown below. The initial solids concentration is 250 mg/L. The resulting matrix is shown below. What will be the overall removal efficiency of a settling basin which is 3 m deep with a detention time of 1 h and 45 min?

<table>
<thead>
<tr>
<th>Depth, m</th>
<th>Time of sampling, min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>0.5</td>
<td>133*</td>
</tr>
<tr>
<td>1.0</td>
<td>180</td>
</tr>
<tr>
<td>1.5</td>
<td>203</td>
</tr>
<tr>
<td>2.0</td>
<td>213</td>
</tr>
<tr>
<td>2.5</td>
<td>220</td>
</tr>
<tr>
<td>3.0</td>
<td>225</td>
</tr>
</tbody>
</table>

*Result of suspended solids test on sample C_i, mg/L

SOLUTION

Step 1. Determine the removal rate at each depth and time

\[
x_{ij} = (1 - \frac{C_i}{C_o}) \times 100
\]

\[
x_{11} = (1 - \frac{133}{250}) \times 100 = 47
\]
SOLUTION...

Step 2. Plot the isoconcentration lines
Step 3. Construct vertical line at $t_0 = 105$ min

SETTLING TANKS /SEDIMENTATION TANKS

- The principle involved in these tanks is reduction of velocity of flow so that the particles settle during the detention period.
- Such tanks are classified into,
 - Fill and draw types tanks (batch-process)
 - Continuous flow tanks.
SETTLING TANKS /SEDIMENTATION TANKS

- Depending on their shape, sedimentation tanks may be classified as,
 - circular,
 - rectangular, and
 - square.
- Depending on the direction of flow, as
 - horizontal flow—longitudinal, radial flow
 - Vertical flow—circular (upward flow)

LONG-RECTANGULAR BASINS

- Long rectangular basins are commonly used in treatment plants processing large flows.
 - hydraulically more stable, and flow control through large volumes is easier with this configuration.
LONG-RECTANGULAR TANK

- **Inlet zone**: In which baffles intercept the oncoming water and spread the flow.
- **Outlet zone**: In which water flows upward and over the outlet weir.
- **Settling zone**: Which occupies the remaining volume of the tank.
- **Sludge zone**: Which extends from the bottom of the tank to just above the scraper mechanism.

Detention time. Is the theoretical time that the water is detained in a settling basin. It is calculated as the volume of the tank divided by the rate of flow, and is denoted as $\theta = \frac{V}{Q}$.

\[
\begin{align*}
\text{Settling velocity} &= \frac{\text{tank depth}}{\text{detention time}} \\
\nu_o &= \frac{H}{\theta} = \frac{H}{V/Q} = \frac{H x Q}{LB x H} = \frac{Q}{A_s} \\
\therefore \nu_o &= \frac{Q}{A_s}
\end{align*}
\]

ν_o or Q/A_s is called **overflow rate** or **surface loading rate** or **surface overflow rate** (SOR).
REMOVAL EFFICIENCY OF PARTICLES

- A particle initially at height h with settling velocity of v_{sh} will just be removed by the time it has traversed the settling zone.
- Particles initially at heights less than h will also be removed and those at greater heights will not reach the bottom before reaching the outlet zone.
- All particles with settling velocity $v_s < v_{sh}$ are removed partly, depending on their position at a height from the top of the sludge zone.
- The efficiency of removal of such particles is given by h/H.

$$\frac{h}{H} = \frac{v_{zh} x \theta}{v_o x \theta} = \frac{v_{zh}}{v_o} \quad \Rightarrow \quad \frac{h}{H} = \frac{v_{zh}}{Q/A_z}$$

The greater the surface area, the higher the efficiency.

CIRCULAR BASINS

- The flow enters at the center and is baffled to flow radially toward the perimeter.
- The horizontal velocity of the water is continually decreasing as the distance from the center increases → the particle path is a parabola.
- Simple sludge removal mechanisms
- require less maintenance
- no excessive weir overflow
SHORT-CIRCUITING AND REDUCTION OF EFFICIENCY

- Theoretically detention time, $\theta = V/Q$.
- But in real flow detention time is not V/Q.
- **Short-circuiting**: the deviation of actual flow of the tank from the flow pattern of an ideal tank
 \[
 \frac{\text{flow through period}}{\text{theoretical detention time}}
 \]
 - Efficiency of displacement = magnitude of short-circuiting x 100.
- It should be greater than 30%.
- Currents induced by the inertia of oncoming fluid, turbulent flow, wind stresses and density, and temperature gradient reduces the settling basin efficiency.

INLET ZONE

- *Inlets* should be designed to dissipate the momentum and accurately distribute the incoming flow
OUTLET STRUCTURE

- consist of an overflow weir and a receiving channel or launder.
- The launder → to the exit channel or pipe.
- re-suspension of settled solids must be prevented
- flow velocity in upward direction has to be limited
- Increase the length of the overflow → overflow weir

DESIGN DETAILS

- Detention period: for plain sedimentation: 3 to 4 h, and for coagulated sedimentation: 2 to 2 1/2 h
- Velocity of flow: < 18 m/h (horizontal flow tanks)
- Tank dimensions: L : B : 3 to 5 : 1
 - Generally L = 30 m (common) maximum 100 m.
 - Breadth: 6 m to 10 m.
 - Circular: Dia < 60 m, Generally 20 to 40 m
- Depth 2.5 to 5.0 m (3 m)
- Surface loading (or) overflow rate or (SOR)
 - For plain sedimentation- 12,000 to 18,000 1/d/m²
 - for thoroughly flocculated water 24,000 to 30,000 1/d/m²
 - horizontal flow circular tank 30,000 to 40,000 1/d/m²
- Slopes: Rectangular 1 % towards inlet and circular 8%
- Weir loading rate, m³/m/d < 248
EXAMPLE

- Find the dimensions of a rectangular sedimentation basin for the following data:
 - Volume of water to be treated = 3 MLD
 - Detention period = 4 hrs
 - Velocity of flow = 10 cm/min

SOLUTION

Detention time = 4 hours = 240 min.
Velocity of flow = 10 cm/min.

\[\therefore \text{Length of tank} = 0.10 \times 240 = 24 \text{ m.} \]

Volume of water in 4 hours

\[
V = \frac{3 \times 10^6}{10^3} \times \frac{4}{24} = 500 \text{ m}^3
\]

\[\therefore \text{Cross-section area} \]

\[A = \frac{V}{L} = \frac{500}{24} = 20.8 \text{ m}^2 \]

Assume a working depth of 3 m.

\[\therefore \text{Width of tank} = \frac{20.8}{3} \approx 7 \text{ m.} \]

Provide an extra depth of 1 m for sludge storage and 0.5 m for free board making a total depth = 3 + 1.5 = 4.5 m.

Hence provide a settling tank of size 24 m x 7 m x 4.5 m.
SOLUTION

*Check:

Volume of water per hour

\[\frac{3 \times 10^8}{24} \]

\[= \left(\frac{3 \times 10^8}{24} \right) \times \frac{1}{24 \times 7} \]

\[= 744 \text{ litres/hour/m}^3 \text{ which is satisfactory.} \]

EXAMPLE

Design a circular basin. A circular sedimentation tank is to have a minimum detention time of 4 h and a maximum overflow rate of 20 m³/m².d. Determine the required diameter of the tank and the depth if the average flow rate through the tank is 6 ML/d.
Solution

- $V=6000 \times 4/24 = 1000$
- $\text{Depth}=20 \times 4/24 = 3.33 = 3.5\text{m}$
- $A_s=V/d=1000/3.5=285.7\text{m}^2$
- $A_s=\pi D^2/4$
- $Diameter=19\text{m}$
- Hence provide 5 m deep (1 m for sludge and 0.5 m free board) by 19 m diameter tank

Example

Design a long-rectangular settling basin for type-2 settling. A city must treat about 15,000 m3/d of water. Flocculating particles are produced by coagulation, and a column analysis indicates that an overflow rate of 20 m/d will produce satisfactory removal at a depth of 2.5 m. Determine the size of the required settling tank.
High-Rate Settling Modules

- Small inclined tubes or tilted parallel plates which permit effective gravitational settling of suspended particles within the modules.
- Surface loading \rightarrow 5 to 10 m/h

Tube Settlers

- Take advantage of the theory that surface overflow loading, which can also be defined as particle settling velocity, is the important design parameter.
- Theoretically, a shallow basin should be effective.
- Use tubes of 25 to 50 mm diameter
- At a 60° angle provide efficient settling
Tube Settlers

Flow Diagram

Plate/Lamella Plate Settler

- Taking advantage of the theory that settling depends on the settling area rather than detention time.
- Distance between plates is designed to provide an upflow velocity lower than the settling velocity of the particles,
- The effective settling area is the horizontal projected area
Plate / Lamella Plate Settler

1. Untreated inflow
2. 3 Flow into lamella
4. Treated flow over V-notch
5. Top of lamella
6. Treated water outflow
7. Sludge collection

Design of Inclined Settlers

\[
v = \frac{Q}{A \sin \theta}
\]

\[
u = \frac{Qw}{A(H \cos \theta + w \cos^2 \theta)}
\]
Example

A water treatment work treats 1.0 m3/s and removes flocs larger than 0.02 mm. The settling velocity of the 0.02mm flocs is measured in the laboratory as 0.22 mm/s at 15 °C. Tube settlers of 50 mm square honeycombs are inclined at a 50° angle and its vertical height is 1.22 m. Determine the basin are required for the settler module.

Solution

- Step 1. Determine the area needed for the settler modules

 \[Q = \frac{(1 \text{ m}^3/\text{s})}{2} = 0.5 \text{ m}^3/\text{s} = 30 \text{ m}^3/\text{min} \]
 \[w = 50.8 \text{ mm} = 0.0508 \text{ m} \]
 \[H = 1.22 \text{ m} \]
 \[\theta = 50^\circ \]

 \[u = \frac{Qw}{A(H \cos \theta - w \cos^2 \theta)} \]

 \[= \frac{0.5(0.0508)}{A(1.22 \times 0.643 + 0.0508 \times 0.643^2)} \]

 \[= \frac{0.312}{A} \]
Solution

- A safety factor of 0.6 may be applied to determine the designed settling velocity. Thus,

 \[\frac{u}{A} = 0.6 \times 0.00022 \text{m/s} = \frac{0.0312}{A} \Rightarrow A = 236 \text{m}^2 \text{ (use 240 m}^2\text{)} \]

- **Step 2.** find surface loading rate \(Q/A \)

 \[\frac{Q}{A} = \frac{(0.5 \times 24 \times 60 \times 60 \text{m}^3 \text{d})}{240 \text{m}^2} = 180 \text{m}^3/(\text{m}^2 \text{d}) \]

- **Step 3.** Compute flow velocity in the settlers

 \(v = \frac{Q}{A} \sin \theta = 180/0.766 \)

 = 235 m/d

 = 0.163 m/min

 = 0.0027 m/s

Solution

- **Step 4.** Determine size of the basin

 - Two identical settling basins are designed. Generally, the water depth of the tank is 4 m. The width of the basin is chosen as 8.0 m. The calculate length of the basin covered by the setter is

 \(l = 240 \text{ m}^2/8 \text{ m} = 30 \text{ m} \)

 - In practice, one-fourth of the basin length is left as a reserved volume for future expansion, to settle heavy flocs, for access and improve inlet condition. The total length of the basin should be

 \(30 \text{ m} \times \frac{4}{3} = 40 \text{ m} \)
SOLUTION

- **Step 5. Check horizontal velocity**
 \[Q/A = (30 \text{ m}^3/\text{min})/(4 \text{ m} \times 8 \text{ m}) = 0.938 \text{ m/min} \]

- **Step 6. Check Reynolds number (R) in the settler module**

 \[
 \text{Hydraulics radius } r = \frac{0.0508^2}{4 \times 0.0508} = 0.0127 \text{m}
 \]

 \[
 R = \frac{vr}{\mu} = \frac{(0.0027 \text{m/s})(0.0127 \text{m})}{0.000001131 \text{m}^2 \text{s}}
 \]

 \[30 < 2000, \text{thus it is a lamella flow OK!} \]

SOLUTION

- **Step 7. Launder dimension**
 - Provide 3 launders for each basin. The launder must cover the entire length of the settler module; thus the length of the launder is 30 m. the flow rate in each launder trough is \(0.5/3 = 0.167 \text{ m}^3/\text{s}\)
 - For a rectangular trough section
 - \(Q = 1.38 \text{ bh}^{1.5}\)
 - Select the width (b) as 0.5 m
 - Thus \(h = 0.39 \text{ m}\)
 - Make the interior height of the launder 0.5 m (0.11 m freeboard)
FIELD TRIP: DEC., 24TH TO 26TH, 2010

Wenji

Adama, Nazareth

Addis Ababa

Gilbel Gibe 3

AAiT Water Treatment By Zerihun Alemayehu