Collection and Distribution of Water

- Deals with the transport of water from the source through the treatment plant to the consumers.
- It requires
 - intake structures,
 - transmission lines,
 - distribution pipe networks and
 - other essential accessories.
Surface water Intakes

- Floating intakes
- Submerged intakes
- Tower intakes
- Shore intakes
- Pier intakes

Reservoir Intake
Tower Intake

Submerged Lake Intake
River Intake

- Major components
 - Screen inlet
 - Intake pipe
 - Intake sump
 - Suction pipe
 - Pumps
 - Gate and foot valves
 - Access

Intake Structures

Figure: an example of a lake intake
locating the positions of intakes

- Avoid wastewater discharge points and pollution hazard
- enable withdrawal of water from a range of levels
- Magnitude and direction of stream or current velocities should not affect the function and stability of the intake structure.
- Reliable access roads and power sources should be available
- should be near to treatment plant
- Should not interfere with navigation requirements,
- major environmental impacts should be avoided

Design Criteria for intake structures

- Design capacity = Q max-day
- Intake velocity should be ≤ 8 cm/s
- vertical positions intake ports should be such that good quality water is withdrawn.
- Locate the top intake port at a distance not less than 2 m from the normal water level and the bottom port at least 1 m above the bottom.
Intake design

- **Volume of sump** → detention time. A detention time of at least 20min is recommended.
- At least two sumps - to avoid interruption of service.
- **Height** (with a freeboard about 0.5m)
- Location of the bottom of the sump should be > 1.5m below the lowest stream level or > 1m below stream bed.

Example 1: River Intake design

- Given the following information proportion a suitable river intake.
 - Daily demand 5000 m³
 - Pump capacity: 50 l/s (working 8 hr/day)

```
HWL 1209.1 m
LWL 1202.5 m
V 1200.1 m
River bank
```
Example 1 Solution

- Capacity of each pump daily = 8 x 3600 x 50 / 1000 = 1440 m³
- Number of pumps = 5000 / 1440 = 3.47 ≈ 4
- Hourly flow of each pump = 5000 / (4 x 8) = 156.24 m³/h
- Take detention time, $T_d = 20$ min
- \Rightarrow capacity = $T_d \times Q = (20/60) \times 156.24 = 52.08$ m³

Example 1 Solution

- Effective height of sump = 6.6 + 1.5 = 8.1
- Free board = 0.5
- Total sump height = 8.6 m
- If we use circular sump diameter = 2.86 m
Pipelines and appurtenances

The selection of pipe materials is based on
- carrying capacity
- strength
- ease of transportation and handling
- availability
- quality of water
- cost (initial and maintenance)

• **Cast iron pipes:**
 - highly resistant to corrosion, strong but brittle,
 - easy jointing, withstanding high internal pressure, long life
 - very heavy and difficult to transport
Pipelines and appurtenances

- **Steel pipe:**
 - strong, very light weight and can withstand higher pressure than cast iron pipes.
 - cheap, easy to construct and can be easily transported
 - cannot withstand external loads, affected by corrosion and are costly to maintain.

- **Cement-lined cast iron pipes:**
 - cement protect against corrosion.
 - very small coefficient of friction than unlined cast iron pipes.
Pipelines and appurtenances

• **Plastic pipes:**
 ▫ corrosion resistant, light weight and economical.
 ▫ Rigid (unplasticized) uPVC is stronger and can withstand much higher pressure for a given wall thickness.

Pipelines and Appurtenances

• **Valves:**
 ▫ to isolate segments of a pipeline, to regulate rate of flow, to control pressure, and to allow release or entry of air from pipe system.

• **Factors considered in the selection of valves:**
 ▫ include purpose and operation,
 ▫ capacity required,
 ▫ head loss and rate of flow,
 ▫ cost,
 ▫ availability, etc.
Pipelines and Appurtenances

- **Shutoff valves:**
 - to stop the flow of water through a pipeline
 - spacing from 150 to 370m
 - a minimum of three of the four pipes connected at a junction are valved.
 - fire hydrant, in inlet, outlet, and bypass lines
 - Gate valves and butterfly valves

Pipelines and appurtenances

- **Check valves:**
 - semiautomatic device and permits water flow only in one direction.
 - in the discharge pipes of centrifugal pumps → prevent backflow
 - in conjunction with altitude valves
Pipelines and appurtenances

• **Altitude valves**:
 ▫ to automatically control the flow into and out of an elevated storage tank or standpipe to maintain desired water level elevations.
 ▫ include double-acting sequence valve, single-acting type, or differential altitude valve

Pipelines and appurtenances

• **Air-release and vacuum valves**:
 ▫ Air-release valves installed at high points of distribution piping, in valve domes, and fittings, and in discharge lines from pump to discharge the trapped air.
 ▫ Vacuum valves are used to protect pipelines from collapse as they are emptied, by allowing air to enter the pipes.
Pipelines and appurtenances

- **Pressure reducing valves (PRV):**

- **Pressure sustaining valves (PSV):**
Distribution systems

• Depending upon the level of the source of water and the city, topography of the area, and other local considerations,

 ▫ Gravitational system,
 ▫ Pumping without storage, and
 ▫ Pumping with storage.

Distribution systems

• Gravitational system:
 ▫ action of gravity without any pumping
 ▫ most economical and reliable
 ▫ for cities situated at foothills
Distribution systems

- **Pumping without storage:**
 - treated water is directly pumped into the distribution mains without storing
 - High lift pumps → operate at variable speeds → to match variable water demand
 - Disadvantageous (power failure) ← no reserve flow
Distribution systems

- **Pumping with storage:**
 - treated water is pumped at a constant rate → stored in elevated distribution reservoir → distributed to the consumers by the action of gravity
 - excess water during low demand period gets stored in the reservoir → supplied during high demand periods.
 - pumps work at uniform rate → high efficiency
 - quite reliable (even during power failure)
Layout of distribution systems

- **Pipe networks:**
 - *Primary or arterial mains*
 - from the *pumping stations* and from *storage facilities* to the various *districts* of the city.
 - valved at intervals of not ≤ 1.5 km
 - *Secondary lines or Sub-mains*
 - run from one primary main to another
 - located at spacings of 2-4 blocks
 - *Small distribution mains or branches*
 - supply water to every consumer and to the fire hydrants

layout of distribution pipes generally follows the road pattern

four types of pipe network layouts –
- *dead end system or branch system,*
- *gridiron system,*
- *ring system,* and
- *radial system.*
Layout of distribution systems

• **Dead end system**
 - solved easily
 - Lesser number of shut-off valves
 - Shorter pipe lengths and the easy to lay pipes
 - cheap and simple and expanded easily
 - dead ends \(\rightarrow\) prevent circulation of water
 - Problematic if a pipe is damaged

![Diagram of dead end system](image)

Layout of distribution systems

• **Gridiron systems**
 - Discharge, friction loss and pipe size is less
 - Not problematic if a pipe is damaged
 - No dead ends \(\rightarrow\) allows circulation of water
 - Good for fire fighting
 - more pipelines and shut-off valves
 - high cost of construction
 - design is difficult and expensive

![Diagram of gridiron system](image)
Layout of distribution systems

- **Ring systems:**
 - closed ring, circular or rectangular
 - suitable for well-planned towns and cities
 - Generally at high demand areas
 - Not problematic if a pipe is damaged
 - No dead ends → allows circulation of water
 - Good for fire fighting
 - more pipelines and shut-off valves
 - high cost of construction
 - design is difficult and expensive

![Ring System Diagram](image)

Layout of distribution systems

- **Radial systems**
 - For city or a town having a system of radial roads emerging from different centers
 - distribution reservoirs at these centers
 - From mains → pumped into the DRs placed at different centers and then to the service areas.
 - ensures high pressure and efficient water distribution

![Radial System Diagram](image)